Skip to main content
Log in

A novel preclinical model of human malignant melanoma utilizing bioreactor rotating-wall vessels

  • Special—Nasa/Johnson Space Center Workshop
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Malignant melanoma poses a serious health risk which is becoming more crucial as the incidence of this disease steadily increases. The development of appropriate in vitro models that reflect the in vivo tumor environment is a key factor for the study of this malignancy. The local tumor microenvironment plays a critical role in the ability of tumor cells to proliferate and metastasize. While interactions among various cell types are known to be important for tumor growth, most in vitro models utilize only tumor cells, ignoring the importance of tumor-stroma interactions, as well as the contribution of immune cells, which may be important for potential therapies. In addition, the cellular architecture found in vivo, known to be involved in changes in gene expression, is not reflected in standard two-dimensional culture systems. In this study, we have utilized rotating-vessel bioreactors to culture minced human melanoma specimens, allowing the culture of three-dimensional structures which reflect the cellular architecture and heterogeneous composition of the tumor site in vivo. The viability of the pieces in culture can be maintained for 1–2 wk. Immunohistochemical analysis shows multiple cellular types similar to the in vivo situation. Therefore, this system provides a unique model of human melanoma that mimics the in vivo tumor environment much more closely than current culture methods. This novel system may be utilized to determine the mechanism of action of current therapy protocols, as well as to develop new treatment regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akins, R. E.; Schroedl, N. A.; Gonda, S. R., et al. Neonatal rat heart cells cultured in simulated microgravity. In Vitro Cell. Dev. Biol. 33A(5):337–343; 1997.

    Google Scholar 

  • Atkins, M. B. The treatment of metastatic melanoma with chemotherapy and biologics. Curr. Opin. Oncol. 9(2):205–213; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Baguley, B. C.; Marshall, E. S.; Finlay, G. J. Short-term cultures of clinical tumor material: potential contributions to oncology research. Oncol. Res. 11(3):115–124; 1999.

    PubMed  CAS  Google Scholar 

  • Barth, A.; Wanek, L. A.; Morton, D. L. Prognostic factors in 1521 melanoma patients with distant metastases. J. Am. Coll. Surgeons 181(3):193–201; 1995.

    CAS  Google Scholar 

  • Becker, J. L.; Prewett, T. L.; Spaulding, G. F., et al. Three-dimensional growth and differentiation of ovarian tumor cell line in high aspect rotating-wall vessel: morphologic and embryologic considerations. J. Cell. Biochem. 51(3):283–289; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Bissell, M. J.; Weaver, V. M.; Lelievre, S. A., et al. Tissue structure, nuclear organization, and gene expression in normal and malignant breast. Cancer Res. 59(Suppl.):1757s-1764s; 1999.

    CAS  Google Scholar 

  • Chopra, V.; Dinh, T. V.; Hannigan, E. V. Three-dimensional endothelial-tumor epithelial cell interactions in human cervical cancers. In Vitro Cell. Dev. Biol. 33A(6):432–442; 1997.

    Google Scholar 

  • Folkman, J. Endothelial cell and angiogenic growth factors in cancer growth and metastasis. Introduction. Cancer Metastasis Rev. 9:171–174; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Goodwin, T. J.; Jessup, J. M.; Wolf, D. A. Morphologic differentiation of colon carcinoma lines HT-29 and HT-29KM in rotating-wall vessels. In Vitro Cell. Dev. Biol. 28A(1):47–60; 1992.

    PubMed  CAS  Google Scholar 

  • Goodwin, T. J.; Prewett, T. L.; Spaulding, G. F., et al. Three-dimensional culture of a mixed mullerian tumor of the ovary: expression of in vivo characteristics. In Vitro Cell. Dev. Biol. 33A(5):366–374; 1997.

    Google Scholar 

  • Goodwin, T. J.; Prewett, T. L.; Wolf, D. A., et al. Reduced shear stress: a major component in the ability of mammalian tissues to form three-dimensional assemblies in simulated microgravity. J. Cell. Biochem. 51(3):301–311; 1993a.

    Article  PubMed  CAS  Google Scholar 

  • Goodwin, T. J.; Schroeder, W. F.; Wolf, D. A., et al. Rotating-wall vessel coculture of small intestine as a prelude to tissue modeling: aspects of simulated microgravity. Proc. Soc. Exp. Biol. Med. 202(2):181–192; 1993b.

    PubMed  CAS  Google Scholar 

  • Graham, C. H.; Kabayashi, H.; Stankiewicz, K. S., et al. Rapid acquisition of multicellular drug resistance after a single exposure of mammary tumor cells to antitumor alkylating agents. J. Natl. Cancer Inst. 86:975–982; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Ingram, M.; Techy, G. B.; Saroufeem, R., et al. Three-dimensional growth patterns of various human tumor cell lines in simulated microgravity of a NASA bioreactor. In Vitro Cell. Dev. Biol. 33A:459–466; 1997.

    Google Scholar 

  • Jessup, J. M.; Brown, D.; Fitzgerald, W., et al. Induction of carcinoembryonic antigen expression in a three-dimensional culture system. In vitro Cell. Dev. Biol. 33A:352–357; 1997.

    Google Scholar 

  • Jessup, J. M.; Goodwin, T. J.; Spaulding, G. Prospects for use of microgravity-based bioreactors to study three-dimensional host-tumor interactions in human neoplasia. J. Cell. Biochem. 51(3):290–300; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, E. S.; Finlay, G. J.; Matthews, J. H. L. et al. Microculture-based chemosensitivity testing: a feasibility study comparing freshly explanted human melanoma cells with human melanoma cell lines. J. Natl. Cancer Inst. 84:340–345; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Meier, F.; Nesbit, M.; Hsu, M.-Y., et al. Human melanoma progression in skin reconstructs: biological significance of bFGF. Am. J. Pathol. 156(1):193–200; 2000.

    PubMed  CAS  Google Scholar 

  • Moretti, S.; Pinzi, C.; Spallanzani, A., et al. Immunohistochemical evidence of cytokine networks during progression of human melanocytic lesions. Int. J. Cancer 84:160–168; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Pinelli, D. M.; Drake, J.; Williams, M. C., et al. Hormonal modulation of Ishikawa cells during three-dimensional growth in vitro. J. Soc. Gynecol. Invest. 5(4):217–223; 1998.

    Article  CAS  Google Scholar 

  • Prewett, T. L.; Goodwin, T. J.; Spaulding, G. F. Three-dimensional modeling of T-24 human bladder carcinoma cell line: a new simulated microgravity culture vessel. J. Tissue Cult. Methods 15:29–36; 1993.

    Article  Google Scholar 

  • Steeg, P. S.; Alley, M. C.; Grever, M. R. An added dimension: will three-dimensional cultures improve our understanding of drug resistance? J. Natl. Cancer Inst. 86:95–97; 1994.

    Article  Google Scholar 

  • Vescio, R. A.; Connors, K. M.; Kubota, T., et al. Correlation of histology and drug response of human tumors grown in native-state three-dimensional histoculture and nude mice. Proc. Natl. Acad. Sci. USA 88(12):5163–5166; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Waldman, T.; Zhang, Y.; Dillehay, J. Y., et al. Cell-cycle arrest versus cell death in cancer therapy. Nat. Med. 3(9):1034–1036; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Zhau, H. E.; Goodwin, T. J.; Chang, S. M., et al. Establishment of a three-dimensional human prostate organoid coculture under microgravity-simulated conditions: evaluation of androgen-induced growth and PSA expression. In Vitro Cell. Dev. Biol. 33A(5):375–380; 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Grimm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Licato, L.L., Prieto, V.G. & Grimm, E.A. A novel preclinical model of human malignant melanoma utilizing bioreactor rotating-wall vessels. In Vitro Cell.Dev.Biol.-Animal 37, 121–126 (2001). https://doi.org/10.1290/1071-2690(2001)037<0121:ANPMOH>2.0.CO;2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1290/1071-2690(2001)037<0121:ANPMOH>2.0.CO;2

Key words

Navigation